

 Python Programming
Practical DCA-3132

1. Write a Program to find the largest number among three numbers . Take
input/output as specified – Print the expected output using the
expected logic/ algorithm / data – code is structured correctly and
according to the problem statement .

 Solution 1 :-

Input three numbers from the user

num1 = float(input("Enter the first number: "))

num2 = float(input("Enter the second number: "))

num3 = float(input("Enter the third number: "))

Compare the numbers to find the largest

if num1 >= num2 and num1 >= num3:

 largest = num1

elif num2 >= num1 and num2 >= num3:

 largest = num2

else:

 largest = num3

Print the largest number

print("The largest number is: {}".format(largest))

Program Output
Enter the first number: 1
Enter the second number: 88
Enter the third number: 74
The largest number is: 88

2. Write a Program to print all prime number of particular interval . (like
prime numbers between 2 and 20) Take input/output as specified –
Print the expected output using the expected logic/ algorithm / data –
code is structured correctly and according to the problem statement .

 Solution 2 :-
 # Function to check if a number is prime

def is_prime(num):
 if num <= 1:
 return False
 if num <= 3:
 return True
 if num % 2 == 0 or num % 3 == 0:
 return False
 i = 5
 while i * i <= num:
 if num % i == 0 or num % (i + 2) == 0:
 return False
 i += 6
 return True

Input the interval from the user
start = int(input("Enter the starting number of the interval: "))
end = int(input("Enter the ending number of the interval: "))

Validate input
if start >= end or start < 2:
 print("Invalid input. Please enter a valid interval.")
else:
 # Print prime numbers within the interval
 print("Prime numbers between {} and {} are:".format(start, end))
 for num in range(start, end + 1):
 if is_prime(num):
 print(num, end=" ")

Program Output

 Enter the starting number of the interval: 2

 Enter the ending number of the interval: 20

 Prime numbers between 2 and 20 are: 2 3 5 7 11 13 17 19

3. Write a Program to print alist having duplicates from a list of integers
[1,2,3,4,5,1,1,2,5,6,7,8,9,]. Take input/output as specified – Print the
expected output using the expected logic/ algorithm / data – code is
structured correctly and according to the problem statement .

 Solution 3 :-

 # Input list of integers
input_list = [1, 2, 3, 4, 5, 1, 1, 2, 5, 6, 7, 8, 9]

Initialize an empty list to store duplicate integers
duplicate_list = []

Create a dictionary to count the occurrences of each integer
count_dict = {}

Iterate through the input list
for num in input_list:
 # If the number is already in the dictionary, increment its count
 if num in count_dict:
 count_dict[num] += 1
 else:
 count_dict[num] = 1

Iterate through the dictionary and add numbers with counts > 1 to the
duplicate list
for num, count in count_dict.items():
 if count > 1:
 duplicate_list.append(num)

Print the list of duplicate integers
print("List of duplicate integers:", duplicate_list)

Program Output

 List of duplicate integers: [1, 2, 5]

4. Write a Program to Display Fibonacci Sequence Using Recursion . Take
input/output as specified – Print the expected output using the
expected logic/ algorithm / data – code is structured correctly and
according to the problem statement .

 Solution 3 :-

 # Function to generate Fibonacci sequence using recursion
def fibonacci(n):
 if n <= 0:
 return []
 elif n == 1:
 return [0]
 elif n == 2:
 return [0, 1]
 else:
 fib_seq = fibonacci(n - 1)
 fib_seq.append(fib_seq[-1] + fib_seq[-2])
 return fib_seq

Input the number of terms in the sequence from the user
n = int(input("Enter the number of terms in the Fibonacci sequence: "))

Validate input
if n <= 0:
 print("Please enter a positive integer.")
else:
 # Generate and print the Fibonacci sequence
 fib_sequence = fibonacci(n)
 print("Fibonacci Sequence (first {} terms):".format(n))
 for term in fib_sequence:
 print(term, end=" ")

Program Output

Enter the number of terms in the Fibonacci sequence: 10

Fibonacci Sequence (first 10 terms): 0 1 1 2 3 5 8 13 21 34

 5. Write a Program to generate dictionary of frequency of alphabets of
given string : “Online_Manipal” - Take input/output as specified – Print
the expected output using the expected logic/ algorithm / data – code is
structured correctly and according to the problem statement .

 Solution 3 :-
Input the string
input_string = "Online_Manipal"
Initialize an empty dictionary to store the frequency of alphabets
alphabet_frequency = {}

Convert the string to lowercase (optional, to treat uppercase and
lowercase letters as the same)
input_string = input_string.lower()

Iterate through the characters in the string
for char in input_string:
 # Check if the character is an alphabet (a-z)
 if char.isalpha():
 # If the alphabet is already in the dictionary, increment its count
 if char in alphabet_frequency:
 alphabet_frequency[char] += 1
 # If the alphabet is not in the dictionary, add it with a count of 1
 else:
 alphabet_frequency[char] = 1

Print the dictionary of alphabet frequencies
print("Dictionary of Alphabet Frequencies:")
for alphabet, frequency in alphabet_frequency.items():
 print(f"{alphabet}: {frequency}")

Program Output
Dictionary of Alphabet Frequencies:
O: 1
n: 3
l: 2
i: 2
e: 1
m: 1
a: 2
p: 1

